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Scientific and technical report 
Final Comprehensive Report 

B.        Description of progress made against milestones during the reporting 
period 
Our blood biomarker proposal had several specific objectives and aims, listed here: 
Aim 1: Develop better software for analyzing dynamically changing transcriptomes. 
Aim 2: Analyze the bloods and multiple organs/tissues of animals from three inbred 
mouse strains exposed to the toxins acetaminophen and carbon tetrachloride for 
transcriptomes, proteins and miRNA biomarkers. 
Aim 3: Establish MRM mass spectrometry assays for at least 25 liver-specific blood 
proteins based on the acetaminophen, CCL4, and other model systems of interest. 
Aim 4: Analyze the bloods and tissues of animals from three inbred mouse strains 
exposed to the toxins acetaminophen and carbon tetrachloride for protein biomarkers 
using proteomics technologies, including MRM. 
Aim 5: Analyze time course experiments of rat tissues and blood exposed to VX. 
Aim 6: Develop new technologies for developing protein-capture agents and the 
analyses of single protein molecules. 

Summary 

At I SB, we have conducted research related to these aims over the past several 
years. Our results and conclusions are presented here. The discovery and validation of 
organ-specific biomarkers are challenging from a technical perspective. Nonetheless, 
we have made considerable progress and, along with the 4 papers already published on 
our work (see below), we anticipate that at least four additional manuscripts will be 
written and submitted for publication within the next few weeks or months. Two 
invention applications have been filed with the patent office. Planned and actual 
publications and invention disclosures are listed in the appropriate research descriptions. 

Progress made with respect to the specific aims 

Transcriptome analysis software 

Aim 1: Develop better software for analyzing dynamically changing transcriptomes. 

Two approaches were taken to this aim. In the first approach (A), a standard 
RNASeq analysis pipeline for standard transcriptomic experiments was constructed by 
Victor Cassen. A second, more sophisticated approach conducted by Gustavo Glusman 
(B), describes in detail how best to normalize, or scale, transcriptome data. 

A. Development of a pipeline for processing RNASeq data 

RNA-Seq is a technology that is gaining popularity due to its high utility, sensitivity, 
and reliability, while simultaneously benefitting from continually reduced costs. 
However, with the rapid rise in data volumes generated by RNASeq and other high 
throughput sequencing technologies, new challenges in data management and analysis 
have arisen. 

The RNASeq pipeline is a software package designed to aid in the computational 
analysis of RNASeq data. Rather than embrace a single approach, the pipeline is 
designed to facilitate the running of multiple, separately written analysis software 
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programs that together constitute a meaningful analysis of the data at hand. This 
approach offers several benefits relating to flexibility: 

• Different projects will have different needs; a project that is interested primarily in 
identifying differential gene expression (e.g., to quantify networks) may not be 
interested in novel alternative splicing discovery. However, various steps (e.g., 
filtering) may still be common to both processing pipelines. The RNASeq 
pipeline allows the user to easily incorporate common software steps into various 
pipelines, abetting software re-use. 

• As analysis algorithms are continuously refined, replaced, and superceded, they 
can be swapped in and out of the RNASeq pipeline with relative ease. 
Additionally, algorithms can easily and reproducibly be compared, both against 
themselves (e.g., with different parameter values) or against other algorithms. 
The RNASeq pipeline incorporates a provenance database that records all the 
information needed to reproduce a pipeline run, as well as performance statistics. 

Features of the software: 
• A collection of pre-configured pipelines and pipeline steps to handle common 

RNASeq processing tasks. 
• Support for a variety of input data types, including single and paired end data. 
• Sun Grid Engine (SGE) support allows pipelines to be run on clusters for 

enhanced performance. 
• Recording of all pipeline runs, including reproduction and performance data. 
• Pipeline run reports. 

Methodology: 
The RNASeq pipeline works by combining the inputs of three configuration files per 

run to produce a unix-based shell script that can be run on a user's local desktop or 
submitted to an SGE cluster. The three inputs correspond to 1) a description of the read 
data to be processed, including it's location on the host's filesystem; 2) a description of 
the pipeline to be applied to the data; and 3) a site-wide configuration file containing 
information pertinent to host. The resulting shell script incorporates commands for each 
step specified in the pipeline's configuration file, matching the outputs of various steps to 
the inputs of dependent steps as directed. Interspersed with the commands for each 
step are calls to RNASeq pipeline-specific commands that record the results and 
execution times of each step into a per-user data, which is then later used to generate 
run reports. 

Documentation: 
A webpage describing the installation and use of the pipeline may be 

found at http://vcassen.qdxbase.org/RNA-Seq 

B. Analysis of digital transcriptomes: optimal scaling and identification of tissue-specific 
genes (Gustavo Glusman reporting) 

Conceptual overview: We have developed a comprehensive transcriptomics analysis 
pipeline focusing on digital transcriptomics data (MPSS, RNASseq). The analysis 
pipeline links a series of computational tasks, as shown in Figure 1. 
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Figure 1. Starting from the expression data sets, known transcripts and the genome reference 
(red boxes), a series of computational tasks (green boxes) lead to the identification of tissue- 
specific genes (blue). These tasks are supported by a variety of additional computational 
procedures (yellow). 

We developed a variety of tools for performing the preliminary data management and 
transformation procedures. Parsing and data correction methods are naturally 
technology-specific. Proper interpretation of the observed sequence reads via mapping 
to transcript clusters and to the genome is crucial for avoiding both false negatives (by 
discarding or mismapping reads) and false positives (by mismapping reads or by giving 
credence to ambiguous mapping results). Nevertheless, while these potential failures 
can lead to errors in establishing the relative expression levels of different genes, they 
are largely consistent when evaluating the expression level of each gene, in different 
samples. Conversely, proper performance of the data normalization task is crucial in 
preparation for cross-sample comparisons of gene expression levels. These latter 
comparisons are the core and central concept on which the identification of tissue- 
specific genes is based. We therefore spent significant effort studying and perfecting 
methods for accurate data normalization via scaling algorithms. 

Methods for normalization: In contrast to methods based on hybridization, in digital 
transcript counting the observed absolute expression level of each gene and transcript 
will depend on the depth to which each sample was sequenced: deeper sequencing will 
uncover transcripts expressed at very low levels, and will proportionally increase the 
observed expression levels of more prevalent transcripts. 

Many data standardization methods have been proposed to date, most frequently by 
scaling the values observed in each sample. The most commonly used method 
normalizes expression values to the total number of reads observed in each sample: 
gene expression values are thus expressed in terms of "counts per million" (CPM) or 
"transcripts per million" (TPM); for RNASeq, the equivalent measure is "reads per kb per 
million" (RPKM). This method has the advantage of simplicity as samples can be 
normalized independently, but its results are sensitive to highly expressed genes: since 
much sequencing output is spent on the most prevalent genes, the presence of a few, 
highly-expressed tissue-specific genes can significantly lower the CPM values for all 
other genes, often leading to the wrong conclusion that the latter are "down-regulated". 



-5- 

A way to avoid such distortions is to normalize gene counts in terms of quantiles; the 
median expression value as commonly used for normalization of microarray data. Due to 
the preponderance of zero and low-count genes in digital transcriptomes, the median 
value is usually uninformative, but expression values may be scaled based on the upper 
quartile. Alternatively, it is possible to adjust the overall expression levels of all genes so 
that the distributions for all samples become equalized. This method cancels global 
biases but, since it does not rely on scaling, it distorts the pairwise gene expression 
ratios within each sample. 

A different class of normalization methods relies on the expression level of a subset 
of the genes to "guide" the normalization. At its simplest level, one may assume that the 
expression levels of certain "housekeeping" genes (e.g., GAPDH, HPRT) are constant 
across cell types, and can therefore be used individually as an internal normalization 
tool. This assumption has been shown to be invalid in various scenarios, leading to 
incorrect results. More elaborate methods therefore rely on minimizing the variance of 
not just one, but a small set of guide genes, or consider the relative RNA production of 
pairs of samples, under the assumption that the majority of genes are not differentially 
expressed. 

We implemented a large number of existing normalization methods and some 
variations on them, and also devised entirely different approaches to data normalization. 
We encapsulated all these methods in an open-source, portable Perl module and an 
equivalent R package. 

Classification and structure of normalization methods: We identified a small number of 
core concepts on which the many normalization methods are based. With the single 
exception of the Quantile Normalization method, all the algorithms we considered are 
global procedures that scale all the values in each sample using a single "scaling factor" 
(Figure 2, next page). Some of the scaling methods are based on a global characteristic 
of each sample (Fig. 2, left), i.e., they study each sample independently and identify a 
characteristic value used for normalization. This characteristic value can be the sum of 
all counts (CPM method), or a specific expression level, e.g., at the upper quartile. We 
added two variations on these methods: using total counts but scaling samples relative 
to each other ('Total" method), and scaling to the upper decile. 

Alternatively, some scaling methods are based on preselected genes (Fig. 2, right), 
either using the expression value of a single housekeeping gene to guide normalization, 
or selecting the subset of housekeeping genes that are most consistent with each other 
("most stable") and using the geometric average of their log-transformed expression 
values to guide normalization (geNorm method). 

Methods of the third class, which are based on genes selected from the data (Fig. 2, 
bottom), start by identifying a (usually large) set of genes expressed in the samples to be 
compared, and then use various combinations of these genes to derive the scaling 
factors that render the samples comparable. The TMM algorithm is one such fully data- 
driven method, based on pairwise sample comparison of "double trimmed" genes (i.e., 
trimmed first by absolute expression level ranks within each sample, and then by 
expression ratios between the two samples). We explored a variety of novel methods 
that use single trimming (by expression level ranks within each sample) and that scale 
all samples simultaneously. In particular, we created the novel Network Centrality 
Scaling (NCS) algorithm that uses pairwise gene co-expression as a similarity metric, 
and identifies the most central genes in the resulting network. These central genes are 
particularly suited to serve as normalization guides. 

Finally, scaling methods can be devised using randomly picked values (Fig. 2, top). In 
particular, we implemented an Evolution Strategy algorithm that stochastically identifies 
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solutions that maximize, as objective function, the number of genes expressed uniformly 
across samples. 

Random Evolution 
Strategy 
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using 
randomly 

picked values 

Upper 
Decile 

maximize 
uniform 
genes 

based on a 
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J Total 
Ubiquitous 
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Figure 2. Taxonomy of normalization methods. 

Even when based on very different concepts, the various normalization methods may 
share one or more computational procedures in common. We dissected the methods 
into distinct computational steps and identified shared components among the various 
algorithms. We organized these into a chart resembling a map of bus lines (Figure 3), 
leading from the raw data matrix (green "station" in Fig. 3) to one of three possible 
endpoints (red "stations"). In this visualization, "stations" represent intermediary results, 
and the lines connecting them represent computational steps. As shown in the figure, 
there are four different initial actions: 1) ignore the data except for the pre-determined 
housekeeping genes; 2) ignore the data entirely and select random scaling values; 3) 
use the data solely to compute the total expression in each sample; 4) sort the data 
matrix in preparation for a variety of more complex computations. 

The sorted data matrix can then be used to compute rank-specific averages (for the 
Quantile Normalization method), to identify the expression levels at different percentiles 
of the distribution (for the upper quartile and upper decile methods), or to identify 
ubiquitous genes. Ubiquitous genes are then used by several methods in diverse ways. 

Except for the CPM and Quantile Normalization methods, all the algorithms we 
describe here converge on a set of relative scaling factors, which we adjust to keep the 
global scale of the data set. These scaling factors can be computed from: 1) equal gene 
weights, 2) variable gene weights, 3) whole-sample weighted means, 4) a target value 
per sample, or 5) random values. 
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We found that best results are obtained with methods involving stochastic 
optimization, and with certain methods based on analysis of ubiquitous genes. 

Figure 3. Computational pathways for normalization. 

Qualification of success of normalization methods: The availability of many 
normalization methods, which produce different results, poses the more complex 
question of how to assess which result is correct. We devised three different ways of 
evaluating the diversity of solutions from the different algorithms. 

1) Maximization of uniform genes. We defined uniform genes as those with very similar 
expression levels across all samples studied. Mathematically, we used a stringent upper 
cutoff on the coefficient of variation. Successful normalization methods adjust expression 
values in such a way that a larger number of genes reach uniformity. Importantly, this 
metric (number of uniform genes) can be used as an objective function, which can be 
optimized using stochastic algorithms. We implemented an Evolution Strategy (ES) to do 
this. The ES consistently identifies the best solutions based on this criterion (Figure 4). 
2) Maximal decorrelation of sample rankings. We found that, under improper 
normalization, different genes tend to rank samples (by expression levels) similarly. 
Conversely, more successful normalization methods minimize this correlation (Figure 5). 
We further found that our best methods bring the average correlation to nearly its 
theoretical absolute minimal value - zero. This suggests that the methods are not just 
successful - they approach optimality. 
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3) Similarity among solutions. While many methods produce very different solutions to 
the normalization problem, a subset of them produce similar results (Figure 6). These 
methods are conceptually and computationally very different from each other, and yet 
they converge on a common solution. This is also the solution that maximizes uniform 
genes and maximally decorrelates samples, lending it strong credence. 
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Figure 6. Comparison between the scaling factors suggested by the different methods. Lower left: 
the resulting scaling factors for the heart sample. Upper right: Pairwise correlations between the 
methods, for all samples. Red shades denote high correlation values (above 0.75), blue denotes 
low correlation (or anticorrelation). The column to the right indicates the number of uniform genes 
identified by the method. The Quantile Normalization method is not included in this analysis since 
it does not produce scaling factors. 

Analysis of tissue specificity: We analyzed the resulting gene expression values 
following normalization with various protocols. We used a few definitions to identify 
uniform, specific, enriched and depleted genes: 
1) Background noise level. We considered genes with a median expression value under 
10 reads to be at noise level. 
2) Variation bandwidth. We considered a two-fold change in expression (up or down 
from the median) to be within "acceptable limits", beyond which a gene may be 
differentially expressed. 
3) For the purpose of this analysis, we considered genes as "uniform" if their median 
level is above background, and all samples were within the variation bandwidth around 
the mean. 
4) We considered a gene to be "specific" to a sample (or to two) if its median expression 
is within noise level, but above the variation bandwidth for the single sample (or both 
samples). 
5) We similarly considered a gene to be "enriched" to a sample (or to two) if its median 
expression is above noise level, and above the variation bandwidth for the single sample 
(or both samples). 
6) We considered a gene to be "depleted" in a sample if its median expression is above 
noise level, but below the variation bandwidth for the single sample (or both samples). 

In this example comparison (Table 1) between raw data (no normalization), 
normalization to total counts, and the network centrality scaling as an approximation to 
the optimal scaling solution, we see that successful scaling yields much larger numbers 
of uniform genes, as expected. 
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Genes Raw Total/CPM NCS 
Uniform 513 1002 1559 

Specific (to 1) 3790 3723 3648 

Specific (to 2) 2139 2224 2185 
Enriched (in 1) 474 842 1323 
Enriched (in 2) 256 418 628 
Depleted (in 1) 848 1020 824 

Depleted (in 2) 661 521 349 
Table 1. Uniform, specific, enriched and depleted genes for the raw data, or after normalization to 
'total' counts (equivalent to counts per million) or Network Centrality Scaling. 

If a gene is not observed (or observed at noise levels) in any sample except for one, 
it will be trivially identified as specific to that sample. Such determination is largely 
unaffected by normalization, and indeed the number of "specific" genes changes little. 
When the expression level in the specific sample is low, there is room for a false-positive 
determination of specificity. Proper normalization may correct this, yielding somewhat 
fewer specific genes, as observed. 

When the expression level in most samples is significantly above noise level but one 
sample (or a few) have significantly higher expression levels, the gene is also 
specifically expressed in that sample. We call this "enriched" in that sample, for 
simplicity. Identifying "enriched" genes is not trivial, and strongly susceptible to 
normalization. The number of tissue-enriched genes identified by the optimal scaling 
methods is much larger than by simpler (e.g., CPM) methods or in the raw data. This is a 
beneficial result that was not imposed by the normalization methods themselves, and we 
count this as additional evidence for successful normalization. 

We explored also the symmetric situation, in which just one sample shows a 
significantly lower level than the rest ("depleted" genes). This situation can reflect a true 
biological effect, though infrequently so. It is much more common to observe this 
situation as a result of improper normalization, e.g., when normalizing by CPM, a highly 
expressed tissue-specific gene may cause other gene expression values to be 
downgraded, resulting in their apparent "depletion". 

Publications: The work described above is being prepared for publication. 
"Optimal Scaling of Digital Transcriptomes" Gustavo Glusman, Max Robinson, Burak 
Kutlu, Juan Caballero and Leroy Hood. An earlier version of this manuscript has 
received DOD approval. 

Software: The software for these analyses is under continuous development, and 
can be found here: http://db.svstemsbioloav.net/qestalt/normalizer/ 

Biomarker studies on the mouse model system 

Aim 2: Analyze the bloods and multiple organs/tissues of animals from three inbred 
mouse strains exposed to the toxins acetaminophen and carbon tetrachloride for 
transcriptomes, proteins and miRNA biomarkers. 

Aim 3: Establish MRM mass spectrometry assays for at least 25 liver-specific blood 
proteins based on the acetaminophen, CCL4, and other model systems of interest. 

Aim 4: Analyze the bloods and tissues of animals from three inbred mouse strains 
exposed to the toxins acetaminophen and carbon tetrachloride for protein biomarkers 
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using proteomics technologies, including MRM. 

Because these three aims are all interconnected, we report progress for all of them 
together, first describing work done in proteomics, and then work done on 
transcriptomes. 

Several ISB researchers worked on these aims, with the result that multiple proteins 
identified as being likely to be primarily liver-specific biomarkers were identified in the 
blood using various mass spec and antibody-oriented technologies. Two sets of in vivo 
mouse experiments were done using acetaminophen perturbation. In one of these sets 
(described in A, B and D below), time course measurements were analyzed on each 
animal separately, revealing the wide range among individual animals in terms of their 
response, even though we used an inbred strain (results are. In the other set (described 
below in C), which was done first to get a lay of the land, animal samples collected at 
various time points were pooled. 

The first report on these three aims is from Shizhen Qin, who describes the 
experimental methods and results, with a focus on using MRM mass spectrometry to 
identify biomarkers indicative of acetaminophen and CCL4 exposure damage. The 
second report is from Bingyun Sun, who has examined protein abundance changes in 
several organs after exposure to acetaminophen. The third report comes from Chris 
Lausted, Zhiyuan Hu, and Hyuntae Yoo who did the initial biomarker survey experiments 
with pooled mouse samples. Finally, Kai Wang reports his work analyzing the effects of 
acetaminophen treatment on the mouse liver transcriptome. 

A.   Mouse model system and MRM results (Shizhen Qin reporting). 

Introduction: In the assessment of liver damage by drugs and chemicals, the 
determination of enzyme levels such as ALT (alanine transaminase) and AST (aspartate 
transaminase) is largely used. Necrosis or membrane damage releases the enzymes 
into circulation; therefore, they can be measured in blood. AST (AST1 and AST2) are 
mainly distributed in heart, muscle, brain, liver and kidney. Any damage of these tissues 
will result in releasing of AST protein into blood stream and is therefore not highly liver 
specific. For example, following a myocardial infarction, serum levels of AST are 
elevated and reach a peak 48 to 60 hours after onset. ALT1 is about 3-4 fold more 
enriched in liver followed by kidney, heart, muscle pancreas and lung and is more liver 
specific than AST. However, ALT2 is similar to AST that is, not enriched in liver more 
than in many other tissues and is mainly found in muscle, liver, heart, pancreas, prostate 
and spinal cord. In laboratory blood tests employing colorimetric and ultraviolet catalytic 
enzymatic reactions for the quantitation of ALT and AST, both ALT and ALT isoenzymes 
1 and 2 are detected due to lack of ability to measure each isoenzyme activity 
separately. In addition to problems with liver specificity, half-lifes of both enzymes in the 
blood stream are short, ALT and AST activities only present in blood for a short period of 
time after liver injuries occurred. New, better liver injury markers are needed. In this 
project, we employed known liver toxins acetaminophen (APAP) and carbon 
tetrachloride (CCI4) in mouse models with liver-specific proteins as targets and mass 
spectrometry technology SRM (selected reaction monitoring) for quantitative proteomics 
to discover new potential markers for liver injuries induced by these two types of 
chemicals. 

Brief description of materials and methods: 
1. Animals, drug treatment and plasma preparation 
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ln the pilot studies, we tried three inbred mouse strains: C57BL/6J, A/J and SJL from the 
Jackson Laboratory and found that all three strains responded to APAP and CCI4 liver 
toxicities similarly as measured by the elevations of blood ALT and AST levels. The 
fourth mouse strain tested, NOD/ShiLtJ, proved more sensitive than the three mouse 
strains tested to both APAP and CCI4 toxicity as judged by earlier responsive time and 
higher ALT and AST levels in the blood after treatment. Therefore, C57BL/6J (B6) and 
NOD/ShiLtJ (NOD) were used for the full tests. (Mouse blood and tissue samples were 
used for the analyses described below) 

Female B6 and NOD mice 8 weeks of age were injected intraperitoneally (IP) with 
375 mg/kg of acetaminophen dissolved with PBS or 1 ml/kg CCI4 diluted 1:10 with sterile 
Corn oil. Control animals received the same volume of PBS (acetaminophen controls) or 
corn oil (CCI4 controls) at each time points. Blood was drawn at 3, 8, 12, 24, 48, 72, 96 
hours after injection for SRM analyses. For western blot analyses, time points were 
extended to 120, 144 and 168 hours. Mice receiving APAP or PBS were fasted for 24 
hours before injection (fasting started from 9:30am). No fasting was done for CCI4 
treated and corn oil controls. The number of mice treated at each time point is 
summarized in Table 2. 

No 
treatment 

3h 8h 24h 48h 72h 96h 120h 144h 168h 

APAP/B6 3 5 5 10 9* 3 3 6* 6* 5* 
PBS/B6 3 3 3 3 3 3 2 2 2 
APAP/NOD 3 5 10 5 5 7 5 8 8 5* 
PBS/NOD 3 3 3 3 3 3 2 2 2 
CCI4/B6 3 3 3 2* 3 3 3 4 4 4 
Corn oil/B6 3 3 3 3 3 3 2 2 2 
CCI4/NOD 3 3 3 3 3 3 3 4 4 4 
Corn 
oil/NOD 

3 3 3 3 3 3 2 2 2 

Table 2. Num Der of mice tr eated a t each t me poir t. Contr ols were treated with PBS (for AF 3AP) 
and corn oil (for CCI4). Due to drug treatment related death, mouse number labeled with * 
indicates number of survivals at that time point. 

Blood samples were drawn by Cardiac Puncture. Typically, 400ul blood was obtained 
from each mouse. Plasma was prepared flowing Tammen's method (see references at 
end of this section). Plasma samples were stored at -80°C without proteinase inhibitors. 

All work for this project involving live animals was conducted under Institutional 
Animal Care and Use Committee (IACUC) approved protocols (10-00 series). ISB has 
an Assurance on file with the Office of Laboratory Animal Welfare (OLAW Assurance 
#A4355-01) and is accredited by the Association for Assessment and Accreditation of 
Laboratory Animal Care (AAALAC Accreditation #001363). All animal works were 
performed in our Pathogen Free (SPF) vivarium facility. 

2. Quantitate AST, ALT levels in treated and control mouse plasma 
Plasma ALT and AST levels were determined colorimetricly by using ALT, AST reagent 
kits following the manufacturer's instructions (TECO Diagnostics, Anaheim, CA). 
Specimens were analyzed on the day of collection. Duplicated measurements were 
performed. 

3. Blood Acetaminophen concentration measurement after injection 
Blood acetaminophen concentrations were measured in plasma with an acetaminophen 



-13- 

Elisa kit with less than 2% cross reactivity of other compounds such as procainamide 
(Neogen Corporation, Lexington, KY). All tests were performed following the instruction 
manual provided. 

4. Plasma sample preparation for SRM 
To reduce the complexity of proteins in the plasma samples, the top 14 highly abundant 
proteins were depleted. Depleted plasma were digested with trypsin and desalted with 
Oasis MCX cartridges (Waters, Milford, MA). 

5. Preparation of the liver-specific and liver-enriched proteins list 
We used a targeted approach focusing on organ-specific proteins to increase the 
likelihood of identifying protein biomarkers in blood that may reflect pathology of a 
particular organ. Our list of liver-specific or liver-enriched proteins (liver proteins) was 
created by analyzing tissue-specificity in RNA datasets and by performing an organ- 
specific protein search with Gene Atlas Interface analysis. The mouse databases 
searched against were 3 datasets from NCBI-GEO (Gene Expression Omnibus) with a 
total of 179 mouse tissues. Due to the similarities of mice and human genome, human 
proteins that were identified by us (Qin et al, 2012 in preparation) as liver-specific or 
liver-enriched were also included in the mouse liver protein list. 

6. Peptide selection from the liver protein list 
The mouse liver protein list contains 165 proteins of which 131 were previously detected 
by mass spectrometry. A total of 547 peptides suitable for SRM analyses were selected 
from 116 of the 131 previously detected liver proteins. Two to three peptides were 
selected from each protein following peptide selection criteria for SRM (Lange, et al., 
2008). Peptides previously identified in PeptideAtlas (Deutsch et al., 2008) were 
preferentially chosen. 

All peptides used in this study were checked by BLAT at http://qenome.ucsc.edu/ and 
Protein BLAST (http://blast.ncbi.nlm.nih.gov/Blast.cqi) searches to ensure that they are 
unique to the target protein at both proteomic and genomic levels. Finally, the 
uniqueness of every Q1/Q3 pair from the target peptides were confirmed by an SRM 
theoretical collision calculator tool (http://proteomicsresource.washington.edu/cgi- 
bin/srmcalc.cgi) 

7. Monitoring liver-specific proteins in blood by SRM 
All SRM analyses were performed on an Agilent 6460A triple quadrupole (QQQ) mass 
spectrometer with a ChipCube nanoelectrospray ionization source coupled with an 
Agilent 1200 nanoFlow HPLC system. 

7.1 Detection of endogenous peptides in pooled plasma samples from control and 
treated animals 
From 131 liver proteins that were previously detected by Mass Spec, 547 peptides were 
selected from 116 proteins that meet the peptide selection standards. We performed 
endogenous peptide (all-light peptide as opposed to heavy peptide standard) SRM 
analyses in an effort to find out how many of the native proteins and their peptides could 
be detected in control and treated mouse plasma samples before heavy peptide 
standards were purchased. From this all-light test, we have detected 199 peptides 
representing 81 proteins. Crude unpurified peptide standards (heavy peptides) that 
correspond to the detected natural counterparts (light peptides) were synthesized with 
heavy isotopic lysine (13C615N2) or arginine (13C615N4) at the C-termini (Sigma- 
Aldrich, USA). 
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7.2 Collision energy optimization and heavy peptide titration 
Collision energies (CE) determined using the default formula from Agilent were further 
optimized with 4 additional CE steps (±5V, ±10V). The best precursors and each of their 
4 transitions under optimized conditions were selected (Figure 7). Detected heavy 
peptides were titrated at 6 concentrations in a normal human serum background to build 
a titration curve and to determine the proper amount of each peptide standard to spike-in 
(Figure 8). 

7.3 Full SRM tests 
Based on titration curves, a proper amount of heavy peptides were spiked in to each 
plasma samples to reach a L/H ratio within ± 10 fold in most cases. One to two mice 
(mouse #1 and 2) from each control group at all time points were analyzed by SRM. For 
CCI4 treated mice, two treated mice (mouse #1 and 2) were analyzed at each time point 
in both NOD and B6 strain. As for APAP treated mice, due to the great response 
variations to the treatment at different time points after treatment, 4 mice and 3 mice 
were analyzed at 8 hour and 24 hour time point, respectively for APAP/NOD and 4 mice 
and 5 mice were analyzed at 24 hour and 48 hour time point, respectively for APAP/B6. 
Duplicated runs were performed for each sample. 

8. SRM data analysis 
All SRM data were processed using the Skyline Targeted Proteomics Environment 
(v1.1) (MacLean et al., 2010). All data were manually inspected to ensure correct peak 
detection and accurate integration. Peptides with at least 3-fold signal-to-noise ratio 
were considered detectable. The total peak area and Light/Heavy ratio of each peptide 
were exported for statistical analysis. 

9. Statistic analysis 
All other analyses including calculation and graphics were generated by scripts written 
by computational biologists at ISB or by Prism 5 graphics software (GraphPad software, 
La Jolla, CA, USA). 

10. Western blot analysis 
To investigate the detectability of potential new marker proteins in plasma by Western 
blotting, plasma (not depleted) samples from treated and control mice were loaded on 
protein gels and proteins in each sample separated. The proteins were transferred to 
PVDF membrane and probed with primary antibodies, washed and incubated with HRP- 
conjugated secondary antibodies. Detections were carried out and the images were 
analyzed using ImageJ. 

Results: 

1. Mouse liver injuries induced by IP injection of APAP and CCI4 measured by ALT 
and AST values 
Responses to the treatment of drugs in mice were judged by the increase of ALT and 
AST enzyme activity in the plasma. To CCI4 treated mice, Variations between individual 
animals in both B6 and NOD strains were small. However, we observed huge individual 
differences in terms of drug responsiveness to APAP injection in both mouse strains at 
the peak responsive time points. In all cases, we noticed AST elevations and ALT 
elevations paralleled each other and therefore only ALT values are cited throughout this 
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study. The ALT values after treatment in both strains by the two drugs were summarized 
in Figure 7. 
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Figure 7. Huge variation among mice at the peak responsive time points indicated by plasma ALT 
levels were observed after APAP treatment in both B6 (A) and NOD (B) mice. Uniformed results 
were obtained after CCI4 treatment in both B6 (C) and NOD (D) strains. Black smooth curve 
lines: average ALT levels after treatment with STDEV error bars. 

Blood APAP concentration tests performed in plasma at 3 and 8 hour time points after 
drug administration in both NOD and B6 mice shown consistent acetaminophen 
concentrations in blood of highly responsive, low responsive and non-responsive 
animals. This fact indicates that the inter-individual differences among animals to APAP 
treatment is not due to incorrect introduction of the drug into the animal systems (Table 
3). 

Sample 
name* 

APAP plasma concentration 
(u,g/ml) at 3 hour after injection** 

ALT level (lU/ml) 

NOD/3h 1 98 53 
NOD/3h 2 91 126 
NOD/3h 3 111 66 
NOD/3h 4 107 95 
NOD/3h 5 89 212 
B6/3h 1 51 102 
B6/3h 2 52 280 
B6/3h 3 40 264 
B6/3h 4 33 1242 
B6/3h 5 39 910 

Table 3. No association of plasma APAP concentration to liver toxicity indicated by ALT 
levels 3 hours after injection in both mouse strains. *Sample name: Strain/time 
point_mouse number. ** At 8 hours after injection, all mouse plasma APAP 
concentrations fall to zero in both strains. 
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2. Identification of liver proteins 
Using strategies described above, by mining the gene expression data, we identified 165 
mouse liver proteins. All these proteins' human counterparts have passed GeneCards (a 
human only database) verification. 

3. Endogenous proteins detected by SRM and confirmed by heavy peptide 
standards 
After suitable peptides and transitions for each liver protein were selected, we used 
pooled control and treated mouse plasma to determine how many liver proteins can be 
detected by SRM. Eventually, we have detected 142 peptides derived from 81 liver 
proteins by SRM and all of them were confirmed by synthetic corresponding heavy 
peptides spiked-in. 

4. CE optimization 
Collision energy optimization was performed as described in Methods. Duplicated runs 
were performed for each CE. A total of 284 charge 2 and charge 3 precursors from 142 
peptides were optimized. Best transitions and collision energies were used for SRM full 
tests. 

5. Consistency and accuracy of SRM data 

5.1 Duplicate SRM runs are well correlated 
Duplicate runs were performed for each sample; technical variations between the two 
runs were small as exemplified with two runs of peptide FVEGLPINDFSR in the 
CCI4/NOD study (Fig 8A). In general, Pearson tests showed good correlations between 
runs (> 0.9 in most cases). 

5.2 Protein levels measured by multiple features are consistent 
When a protein level is measured by more than one peptide, close agreement in 
quantification was observed. This observation gave us reasonable confidence that 
protein levels in samples estimated from a single peptide from a given protein can be 
reliable (Figure 8B). 
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Figure 8A. MRM analysis. Variations between technical replicates were generally small with a 
Pearson correlation value >0.9 between duplicate runs, plasma protein levels of measured by 
peptide FVEGLPINDFSR in the CCI4/NOD test were consistent. T run_1, treated first run; T 
run_2, treated second run; C run_1 control first run; C run_2, control second run. 8B. Multiple 
peptides derived from the same protein performed consistently in most SRM tests. As shown 
here, protein plasma levels measured by two different peptides selected from the same protein 
were in close agreement. Relative protein levels in plasma are indicated by normalized 
light/heavy peptide ratios. 

6. Thirty informative proteins were found to distinguish controls and APAP or 
CCI4 treated mice 
From the 81 proteins tested by SRM in this study, we identified 30 proteins (known liver 
markers AST1 and 2 included) that are able to separate drug treated mice from their 
controls. These 30 proteins fall into 4 categories: 1) As good: protein levels higher in 
treated animals that are basically as significant as ALT and AST levels measured with 
the colorimetric enzymatic reactions and by SRM (AST1 and AST2); 2) Worse: proteins 
levels are higher in treated animals but the differences are less significant than detected 
by ALT and AST; 3) Potentially better: protein levels higher in treated animals that are 
potentially better than ALT and AST as liver injury markers; and 4) Leverl down: protein 
levels that are lower in treated mice than in controls. The results are summarized in table 
4. 
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Non- 
informative 

Informative 

H—'   As good      Worse         j£! 

51(63%)         8(10%)          13(16%)       5(6%)           4(5%) 

Protein 1 Protein 4 Protein 2 Protein 5 Protein 54 

Protein 3 Protein 6 Protein 17 Protein 31 Protein 67 

Protein 7 Protein 15 Protein 18 Protein 38 Protein 75 

Protein 8 Protein 16 Protein 33 Protein 53 Protein 81 

Protein 9 Protein 19 Protein 37 Protein 56 

Protein 10 Protein 24 Protein 46 

Protein 11 Protein 45 Protein 48 

Protein 12 Protein 50 Protein 52 

Protein 13 Protein 62 

Protein 14 Protein 64 

Protein 20 Protein 71 

Protein 21 Protein 79 

Protein 22 Protein 80 

Protein 23 

Protein 25 

Protein 26 

Protein 27 

Protein 28 

Protein 29 

Protein 30 

Protein 32 

Protein 34 

Protein 35 

Protein 36 

Protein 39 

Protein 40 

Protein 41 

Protein 42 

Protein 43 

Protein 44 

Protein 47 

Protein 49 

Protein 51 

Protein 55 
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Protein 57 

Protein 58 

Protein 59 

Protein 60 

Protein 61 

Protein 63 

Protein 65 

Protein 66 

Protein 68 

Protein 69 

Protein 70 

Protein 72 

Protein 73 

Protein 74 

Protein 76 

Protein 77 

Protein 78 

Table 4. Results of SRM analyses of the 81 liver proteins searched for liver injury markers. 
Existing liver marker AST (AST1 and 2) are included as informative proteins in the "as good" 
category. Protein names are denoted as Protein 1 to Protein 81 before publication (protein names 
will be provided upon request by DOD). "Better", "as good" and "worst" are terms to describe the 
new markers as compared to the classic liver markers ALT and AST. "level down" markers have 
lower plasma protein concentrations in treated animals than in controls. 

6.1 Eight proteins are shown potentially better as liver injury markers in our 
animal models than the existing liver marker ALT and AST 
The power of the strategy of using liver specific proteins as targets combined with SRM 
technology was demonstrated in this study by revealing 30 proteins that are informative 
to liver injuries caused by chemical exposures. More significantly, we have found 8 
proteins that performed better in at least one drug/strain combination in this study and 
may potentially serve as better markers than ALT and AST for liver injuries. 

6.2 Five proteins are confirmed significantly better than ALT and AST 
Out of these 8 proteins, we are particularly interested in five: Protein 45, Protein 19, 
Protein 6, Protein 4 and Protein 16. Protein 45 is interesting because its extended 
presence in plasma widened the detectable period of liver injuries caused by CCI4 in 
NOD mice from a narrow window (sharp peak at 24 hours after treatment) to 24-168 
hour after drug injection. This elongated damage-detectable period is also true in the 
other mouse strain/drug combination after CCI4 treatment. 

Alternatively, Protein 19 levels in plasma start to show increase at 3 hours and reach 
peak value 8 hours after treatment and this protein acts as a better marker for early 
detection of CCI4 caused injuries. A combination of Protein 19 and Protein 45 will cover 
the detectable period of CCI4 induced liver injuries in NOD mice from 3 hours to at least 
168 hours after drug treatment. Similar results were obtained for CCI4 induced injuries in 
B6 mice except that the peak responsive time point to the toxic effect of CCI4 was at 48 
hour after treatment. On the contrary, ALT and AST are indicative mainly at 24 hours for 
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NOD mice after treatment. The results of Protein 19 and Protein 45 as markers for CCI4 
induced liver injuries in NOD mice are summarized in Figure 9. 
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Figure 9. Combination of protein 19 and Protein 45 are superior to ALT and AST in detecting 
liver injuries induced by CCI4 in NOD mice. A) SRM and enzymatic reaction data at time points 
after exposure to CCI4. AST1 and AST2 levels in plasma elevated mainly at 24 and 48h time 
points as measured by SRM and at 24h time points by enzymatic reactions. B) Protein 45 levels 
are significantly higher from 24 to 96h (measured by two Protein 45 peptides in SRM analysis) 
and Western blot analysis is consistent with SRM results. By using Protein 45 as liver injury 
marker, the detectable period is extended to at least 168 hours after treatment. C) Protein 19 
levels were detected early at 3h after treatment with CCI4 and were still highly detectable at 48h 
time point (measured by SRM with two Protein 19 peptides and by Western blot). D) top: Western 
blot image of AST1. AST1 protein band shown mainly at 24h time point after treatment. Middle: 
Western blot image of ALT protein. Bottom: Western blot image shown a combination of Protein 
19 and Protein 45 successfully detected liver injuries from 3 to 168 hours after CCI4 exposure. 
Similar results observed in B6 mice treated with CCI4. T1: treated mouse 1; T2: treated mouse 2; 
C: control mouse 1 at each time point. In all cases, mouse 1 at each time point was used for 
Western blotting. 

In acetaminophen-treated NOD mice, the peak responsive time point is at 8 hours 
after treatment. At the 3-hour time point, test results of both mouse 3h1 (3-hour time 
point mouse number 1, and so on) and 3h2 ALT enzyme failed to show any level 
increase although pathologic microvesicular changes are clearly shown. However, 
Protein 4 levels measured by SRM demonstrated significant increase at the 3 hour time 
point. Similarly, at the 96 hour time point, mice 96h4 showed no increase of ALT level. 
However, the increases of Protein 45 levels for corresponding mice were significant. 
More impressively, western blot results of AST1, AST2 and ALT only revealed a protein 
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band at the 24 hour time point for ALT, 8 and 24 hour time points for AST1, and 24, 72 
hour time points for AST2. Alternatively, Western blot results also demonstrated that 
Protein 45 is a better marker than ALT and AST at the corresponding 24, 48, 72, 96 time 
points with clear Protein 45 bands shown in each lane. The results of enzymatic reaction 
of ALT, SRM results for Protein 4, Protein 6, Protein 16, and Protein 45 in APAP treated 
NOD mice with corresponding Western blot gel results are summarized in Table 5. 

Time points 
No 
treat 

3h 
2 

8h 
2 

24 
h4 

48h 
2 

72h 
4 

96 
h4 

120 
h2 

144 
h2 

168 
h2 

Protein/peptide Enzyme/SRM/fold changes* 

ALT enzyme 1 1 
11 
8 

43 12 24 1 1 1 1 

Protein 4** 1 4 71 4 3 1 1 NT NT NT 
Protein 6 1 1 66 43 51 121 1 NT NT NT 

Protein 45** 1 1 10 
23 
9 

557 115 
0 

4 NT NT NT 

Protein 16** 1 1 
26 
6 

29 148 185 1 NT NT NT 

Proteins Western blot bands*** 

GPT 
AST1 
AST2 
Protein 4 NT NT NT | NT NT NT NT NT NT NT 
Protein 6 

^fll Protein 45 Efl 
Protein 16 

Table 5. Protein level changes listed in table 3 are from mice that are highly responsive to drug 
treatment at each time point. ALT protein levels in plasma were measured by enzymatic reactions 
(IU/L), Protein 4, Protein 6, Protein 16 and Protein 45 levels were measured by SRM (L/H ratios). 
Protein level fold changes were calculated by treated level/control level at each time point. NT: 
not tested. 

Less than >2 fold change of protein level is considered as fold of change = 1 
**   Protein in controls not detected. Used highest noise as control value to calculate fold of 
changes. Fold changes are relative. Fold changes in these cases are actually infinite. 
***    ±, weak band; D, strong band; blank, no band. Protein 4 was not tested by Western blotting 
due to luck of good antibody. 

Summary and discussion: We adopted a liver-specific protein based strategy for finding 
liver injury biomarker discovery in blood. The approach is centered on the idea that 
concentration of organ-specific proteins in the blood can be used to monitor the status of 
a specific organ because changes in blood concentrations reflect the normal as opposed 
to toxin-exposed and disease-perturbed status of their cognate biological networks. We 
mined transcriptomic databases to identify organ-specific proteins and created a 165 
liver protein list. We used a mass spectrometry based SRM technology to selectively 
target liver-specific proteins in the blood from control and drug treated animals. We have 
established a workflow as illustrated in Figure 10. By using this SRM targeting liver 
protein strategy, we have assayed 81 liver-specific blood proteins based on the 
acetaminophen, CCL4 model systems in two mouse strains. 
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Figure 10. Workflow employed in this project for finding new liver injury biomarkers. 

One of the greatest challenges in analyzing the plasma proteome is the complexity 
and extremely wide dynamic range of concentration of different proteins in the blood. 
Blood chemistry is the ultimate window into one's health. The human plasma proteome 
holds the promise of a revolution in disease diagnosis and therapeutic monitoring. 
Sampling blood is one of the least invasive methods of biological sample collection. 
However, blood contains tens of thousands of different proteins from all tissues plus 
numerous distinct immunoglobulin sequences with an extraordinary concentration 
dynamic range in 12 orders of magnitude. The extreme complexity and dynamic range of 
blood proteins made detection of individual protein of interest very difficult. To address 
this challenge, we adopted SRM technology to selectively monitor the limited number of 
proteins of interest (81 liver proteins) instead of randomly sampling a small portion of all 
blood proteins as by the mass spectrometry shotgun method. SRM can target specific 
peptides and proteins like antibodies without spending time and money to develop them, 
can be highly sensitive and can be high throughput and can be multiplexed to monitor 
>50 proteins in a single run. When used in combination with isotopically labeled 
standards it can also quantify levels of corresponding endogenous proteins in biologic 
samples. To effectively reduce the complexity of blood proteins, we used immunoaffinity 
columns to remove the most abundant proteins from the samples to allow for study of 
our less-abundant liver protein targets. The 14 most abundant proteins compose 90% of 
the total blood protein. Removal of the abundant protein resulted in a 10-fold enrichment 
of proteins of interest in the samples and an increase detection sensitivity. We observed 
significant sample-to-sample variations with the Seppro® lgY14 spin column in a 
separate study. The adoption of AKTA FPLC system coupled with a Seppro® lgY14 LC5 
depletion column greatly improved the reproducibility of sample preparation (Qin et al, 
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2012). The sensitivity of the tests was further increased by careful optimization of 
collision energy and selection of the best-fit peptides and transitions. One of the key 
steps in our workflow that may have contributed to the success of finding new markers 
for liver injuries is that we performed pilot studies to investigate how many endogenous 
proteins can be detected under our SRM conditions not only in control plasma samples, 
but also in treated samples. If only the controls were used to reveal the detectability of 
liver proteins in plasma by SRM and monitoring these proteins for drug treated full tests, 
many targets would be missed because most of the promising new markers were 
present only in the circulating blood stream after drug induced liver damage accrued but 
not in untreated mice. 

The power of this approach has been demonstrated from this study in which we 
have found 30 liver proteins that can be used to monitor liver injuries after chemical or 
drug exposure in mice. In addition, 5 proteins showed strong evidence that they might be 
potentially better than the long existing liver biomarkers ALT and AST. 

Unlike AST and ALT enzymatic reactions, these 5 new protein markers can be 
integrated into antibody- or synthetic capture agent-based microfluidic chips (Integrated 
Blood-Barcode Chips), devices that have the potential to analyze large numbers of 
patient samples rapidly (in a few minutes), inexpensively, and in a highly multiplexed 
format (100s or even 1000s of different assays investigating many different diseases) 
employing blood from a pinprick. 

Finding biomarkers has never been easy. Despite the fact that billions of dollars have 
been invested by big pharma, private investors and government grants, one new 
biomarker has been discovered each year on average. We have discovered and 
confirmed 5 proteins are superior to ALT and AST in mouse models. We believe that it 
would be a great waste if we stop here. We hope that we would have additional support 
to investigate these potential new liver markers in human subjects and explore the 
possibilities of conducting clinic trials with these new markers. 
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B. Analysis of multiple organ response to acetaminophen exposure (Bingyun Sun 
reporting) 
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Introduction: Blood is an ideal window for us to check disease and health status. Using 
mouse as an animal model for acetaminophen-induced toxicity study, I assessed 
acetaminophen-overdose multi-organ responses by analyzing the blood toxicoproteome. 
Tissue/organ specific protein signatures can leak or secrete into blood stream due to 
acetaminophen (APAP) toxicity. Clinical observation and animal studies have both 
indicated that acetaminophen idiosyncratic toxicity can impair multiple tissues and 
organs. To comprehensively examine such global responses, I developed a sensitive 
blood proteomics strategy as shown in Figure 11 that used immunodepletion to remove 
an abundant blood protein, albumin, a special N-terminal labeling technique for 
quantification purpose and a glycopeptide-capture method to fractionate blood proteome 
for non-glycopeptides and glycopeptides with glycans removed. All these efforts 
simplified blood protein complexity, and improved mass spectrometry (MS) identification 
and quantification accuracy. In the end, we successfully identified multiple organ 
responses of APAP in our mouse model, including kidney, heart, muscle, bone marrow, 
brain, intestine, and adipose tissues. Both Western blotting and targeted MS analyses 
were carried out and we successfully validated a list of organ specific proteins that can 
be used as location markers for disease, especially for toxicity diagnosis. Our results 
have agreed with previous knowledge about APAP toxicity collected through human and 
animal studies using techniques such as histopathology and radio-isotope tracing; and 
this is the first time to comprehensively discover multi-organ responses through a blood 
proteomics effort. 

Serum (Control)      Serum (APAP) 

* I 
Albumin depletion 

I * 
Trypsin digestion 

I I 
N-isotag labeling 

Glycopeptide capture 

Glycopeptides      Non-glycopeptides 

* * 
Strong cation exchange fractionation 

t * 
rp-LC-MS/MS 

Figure 11. Illustration of the gagQP serum proteomics strategy, in which serum depleted albumin 
is subjected to denaturation and trypsin digestion, followed by labeling, glycopeptide-capture and 
reverse phase LC-MS/MS analysis. 

Results: The major proteomics technical improvements for this study include first using a 
new N-isotag labeling reagent as shown in Figure 12 below. This new reagent increases 
MS identification efficiency of the labeled peptides; and the large mass shift between 
quantifiable biological samples created by this labeling reagent improves the flexibility of 
choosing the appropriate mass spectrometers for quantification. Secondly we adapted a 
glycopeptide capture method as a fractionation scheme here to simplify blood proteome 
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complexity and to remove glycan interference to MS identification of peptides as 
illustrated in Figure 11. 

t-Boc-Leu-NHS(15N,13C) 

Isotag-Peptide-R        H-L=7 Da 

Isotag-Peptide-K        H-L=14 Da 
i 

Isotag 

lsotag=Leu 

Figure 12. Chemical structure of the heavy formed (13C and 15N) N-isotag and its modification to 
peptides. 

Using this strategy, we identified a list of organ-specific protein markers in blood and 
many of them showed responses to acetaminophen toxicity as summarized in Table 6. 

Tissue Gene symbol MS 
quantification 
changes 

Bone Lcpl* 3.8 
Marrow 

Ltf 2.9 
Pip* 21 

Brain Ptgds 2.8 
Fat Mel 8.7 
Heart/Muscle Mb* 0.8 
Muscle Ckm 2.1 
Kidney Selenbp2(SBP)* 6.4 

Mdhl 6.4 
Sardh 8.5 
Umod 5.3 

Skin Car6 2.3 
Intestine Apoa4 2.1 

Fabpl 204 
Ppmla 2.2 

Table 6. Protein candidates identified for APAP overdose induced extra-hepatic responses 
derived from global MS survey, * highlights the proteins having been validated by Western as 
shown in Figure 13. 
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We validated both the organ specificity of the discovered protein markers as well as their 
responses in toxicity in blood. The Western blotting validation results are summarized in 
Figure 13. Our quantitative MS results also agreed well with observation made through 
other characterization approaches such as the use of surface plasma resonance array to 
measure protein concentration in blood as shown in Table 7. 
A. 

Oh      1h       3h      12h    24h    48h    96h   192h 
B. 

mouse after perfusion serum 

Figure 13. A: Western blot validation of mouse tissue specificity and response to drug in control 
and treated mouse sera of marker proteins identified through blood toxicoproteomics. B: Western 
validation of selected protein marker responses in mouse sera as a function of time after LD 50 
APAP treatment. 
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# Symbol Toxicoproteomic^ SPR 

A A 

GPT1 (SGPT) A A 

6 GLUDI A A 

A 
FAH A ^n 
MAT1A A 

If Ahcy A ^n 
11 Aldhlll A 

12 ASS1 A A  | 
13 FBP1 i^HHHH 
14 Fted A A 

1* HPD A 
BHMT 

1? HOD A 

Table 7. Liver-specific proteins identified as differentially expressed in blood in response to APAP 
challenge by our toxicoproteomics and surface plasma resonance (SPR) techniques. Up and 
down solid triangle symbols indicate increased and decreased serum concentrations, 
respectively. 

This proteomics effort for the first time to our knowledge demonstrates the strength of 
using high throughput MS protein analysis to comprehensively and sensitively identify 
global responses to drug toxicity. The organ specificity of the identified mouse protein 
markers has also been tested on human orthologous proteins. Many of these proteins 
carry the same tissue/organ signature property, thereby the validated organ marker 
proteins can be used directly to indicate the organ location of human diseases. 

Publications: A manuscript is being prepared and will be submitted to DOD for approval. 
Glycocapture-Assisted Global Quantitative Proteomics (gagQP) Reveals Multiorgan 

Response in Blood Toxicoproteome. Bingyun Sun, Jeffrey A. Ranish, Angelita G. Utleg, 
Zhiyuan Hu, Andrew Keller, Shizhen Qin, Cynthia Lorang, Li Gray, Amy Brightman, 
Denis Lee, Vinita M. Alexander, Robert L. Moritz, Leroy Hood" 

C. Summary of the pooled mice biomarker study (Christopher Lausted, Zhiyuan Hu, 
Hyuntae Yoo reporting). 
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Introduction: Over the course of this project, we utilized a mouse model and in vitro 
models to study liver injury, analyzed these biological models using novel antibody 
microarrays (see Aim 6 below) as well as immunoblotting and mass spectrometry, 
discovered fifteen new potential blood biomarkers, and developed novel antibody-based 
assays for these markers. 

Biomarker Discovery. Using pooled mouse samples in a protocol following a time 
course after exposure to acetaminophen, fifteen liver-specific blood proteins were 
identified as markers of acetaminophen (APAP)-induced hepatotoxicity using three 
proteomic technologies: label-free antibody microarrays, quantitative immunoblotting, 
and targeted iTRAQ mass spectrometry. Liver-specific blood proteins produced a 
toxicity signature of eleven elevated and four attenuated blood protein levels.   These 
blood protein perturbations begin to provide a systems view of key mechanistic features 
of APAP-induced liver injury relating to glutathione and S-adenosyl-L-methionine (SAMe) 
depletion, mitochondrial dysfunction, and liver responses to the stress. Two markers, 
elevated membrane-bound catechol-O-methyltransferase (MB-COMT) and attenuated 
retinol binding protein 4 (RBP4), report hepatic injury significantly earlier than the current 
gold standard liver biomarker metric, alanine transaminase (ALT). These biomarkers 
were perturbed prior to onset of irreversible liver injury. Five of these mouse liver- 
specific blood markers had human orthologs that were also found to be responsive to 
human hepatotoxicity. These proteins appear along with conventional biomarkers and 
non-organ specific potential biomarkers in Figure 14. 

Symbol Protein name Ca*ri»             SM          WB           MS 
locattzaion 

ALDH1L1 Aldehyde dehydrogenaae 1 temiy. member LI Cytoplaam t 
BHMT Bet*ne--riomocy»teine S-methyltren»tera»e 1 Cyloplaam t 
CPS1 Carbemoyl-phoephate lyrthetase 1 Mrtochondnon            - 1 
FAH FumaryleceloecetMe hydrolaae Cyloplajni T 

Fruaoee-1.6-biephoephela»e 1 Cyloplaim 
GNMT Gr/cme N-metiylbanrferaee Cyloplaam               t t 
HPO 4-hydro«yphenylpyniveli duxygenaee Cyloplaam 1 

MatHontoe aoenoayttranileraae 1 Cyloplaam 
MB-COMT Membrane-bound Cetechol-O-methyltrerisierase Membrane 
AOXT AJanme-gtyoxytat» ammotransteraae Peroxisome 
DPYS Lwiydropynmdmaee Cyloplaam               t t 
ALDOB Fructoaa-biephoephaie aktolase B Cyloplaam               t t 
ASGR1 A»atoo)ycoprole«i reoaptor 1 Membrane              f 
ASGR2 Anatoglycoprotem raoaplor 2 Membrane               ! • 
ASL Argmmosuccmete lyaaa Cyloplaam T 
HMGCS2 3-hydroxy-3-melriy1glutafyl-Coanzyme A tyntiasa 2 Mitochondrion            • 

OOT1 (AST)* Aipartale ranaeminaee Mitochondrion            t 
GPT1 (ALT)- Aianine Irancamineae Cytoplaam t 
GLUOV GkJUmale dehydroganaae 1 Mitochondrion 

CP C«n*cple*mm Secretory             I 
PLG Ptaaminogen Secretory               J i 
RBP4 Re»nol-b<nd»ig protein 4 Secretory             i i 
TF Tranaferrtn Secretory               1 i 

_ALB1_ .AJbumJL Secretory 

Time Pant (Hour) 

•ConventioneJ Kver (unceon bomerker» TiMPaM(Hw1 

Figure 14. Potential biomarkers observed. A) Using label-free antibody array (SPRI), Western 
blot (WB), and iTRAQ (MS) methods, 24 protein level changes were observed in mouse plasma. 
Four proteins are conventional liver function biomarkers and 20 are potentially novel biomarkers. 
Increased (-), decreased (") and unchanged («) measurements are indicated by arrow directions. 
B) Quantitative plasma profiles for four secretory proteins. C) Quantitative plasma profiles of ALT 
and novel biomarkers. ALT indicates injury at 3 hours, peak at 12 hours, and return to baseline at 
96 hours. ALT levels here were assayed by enzymatic activity and reported in lU/mL. COMT and 
CPS1 have apparently different patterns from ALT. D) Quantitative liver lysate profiles of the 
novel blood biomarkers. Lysate profiles differed greatly from the plasma profiles. The increase in 
COMT levels was shifted later in time, while the other protein levels are attenuated between 24 
and 48 hours. 
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Our in vivo experimental approach entailed injecting C57BL/6 mice with half-lethal 
dose of APAP and then studying the dynamic change of liver-specific protein 
concentrations in liver and blood. About 30% of the mice died between 24 and 48 hours. 
Histological staining of the sliced tissue showed progressive necrosis increasing to a 
maximum at 24 hours post-injection. In surviving mice, the liver histopathology returned 
to normal between 72-192 hours. Blood ALT/AST levels indicated clear injury starting at 
3 hours post-injection, with maximal blood ALT/AST values (>10,000 IU/L) occurring 
between 12-24 hours, then gradually decreasing to normal levels. Including previously 
identified blood proteins, 24 proteins were observed to correlate with injury using SPRI 
microarrays, immunoblotting, and mass spectrometry. 

Publications and inventions: This work has been submitted for publication (manuscript 
draft approved by the DOD). "Blood protein signature for hepatotoxicity—systems 
strategy for organ-specific biomarker discovery." Zhiyuan Hu, Christopher Lausted, 
Xiaowei Yan, Hyuntae Yoo, Amy Brightman, and Leroy Hood. (Submitted to Molecular 
and Cellular Proteomics.) 

A patent application has also been filed in the USA and Europe. 
• United States Patent Application Serial Number 12/785,279 entitled NEW 

BIOMARKERS FOR LIVER INJURY, filed 21 May 2010, assigned to the Institute 
for Systems Biology 

• PCT/US2010/035829 entitled NEW BIOMARKERS FOR LIVER INJURY, filed 
21 May 2010, assigned to the Institute for Systems Biology. 

D. Analysis of the transcriptome after acetaminophen exposure (Kai Wang reporting) 

Analysis of mRNA in liver. We conducted detailed studies on the effects of 
acetaminophen overdose on the transcriptome in mouse liver. Like earlier reports, most 
of metabolism-related biological processes including pathways associated with lipid, 
amino acid, carbohydrate, and nucleotide metabolisms are all significantly suppressed in 
the liver while various cell proliferation and cell signaling pathways were enhanced after 
acetaminophen overdose (Table 8). 

One of the key players in neutralizing the toxic acetaminophen metabolite, N-acetyl- 
p-benzoquinoneimine is glutathione. In contrast to transcripts involved in other 
metabolism related pathways, the levels of transcripts encoding enzymes involved in 
glutathione metabolism, such as various glutathione S-transferases, glutathione 
reductase and glutathione synthetase are all significantly induced after acetaminophen 
exposure. This also indicated by the strong enrichment of glutathione metabolism 
pathway associated with up-regulated genes after acetaminophen overdose (Table 8). 
This suggests a compensation mechanism in the cells trying to replenish glutathione 
levels in order to metabolize acetaminophen and its toxic metabolite. 

The ability to construct biologically meaningful gene networks and modules from 
transcriptome studies is critical for contemporary systems biology. We have devised a 
method, Semantic Similarity-Integrated approach for Modularization (SSIM) that 
integrates various gene-gene pairwise similarity values, including information obtained 
from gene expression, protein-protein interactions and GO annotations, in the 
construction of modules using affinity propagation clustering. In comparison with 
previously reported algorithms, modules identified by SSIM showed significantly stronger 
association with biological functions. Specifically, SSIM is effective in identifying 
coherent functional modules in which genes are highly co-expressed, interconnected via 
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protein-protein interactions and functionally similar in terms of GO annotations (Figure 
15). The SSIM approach can also reveal the hierarchical structure of gene modules to 
gain a broader functional view of the biological system. Hence, the proposed method 
can facilitate comprehensive and in-depth analysis of high throughput experimental data 
at the gene network level. 

Category Pathway Description 

Drug metabolism other enzymes 

Metabolism of »enobiotics by cytochrome P450| 
Drug metabolism P450 

Propanoate metabolism 
Pentose and glucuronate interconversions 

Starch and sucrose metabolism 

Ascorbate and aldarate metabolism 
Butanoate metabolism 

Fructose and mannose metabolism 
Galactose metabolism 
Glycolysis /Gluconeogenesis 

Pyruvate metabolism 

Histidine metabolism 

Selenoamino acid metabolism 

Phenylalanine metabolism 

Tyrosine metabolism 

Cysteine and methionine metabolism 

Tryptophan metabolism 
Arginine and proline metabolism 

Vahne. leucine and isoleucine degradation 

Alanine. aspartate and glutamate metabolism 

Glycine, serine and threonine metabolism 

beta-Alanine metabolism 

Glutathione metabolism 

Steroid biosynthesis 
Fatty acid biosynthesis 

Biosynthesis of unsaturated fatty acids 
Primary bile acid biosynthesis 
Androgen and estrogen metabolism 

Arachidonic acid metabolism 

Steroid hormone biosynthesis 

Linoleic acid metabolism 
Purine metabolism 

Pyrimidine metabolism 
Sulfur metabolism 

Nitrogen metabolism 

Porphyrin and chlorophyll metabolism 

Pantothenate and CoA biosynthesis 
Retinol metabolism 

Up-regulated Down-regulated 

3hr    8hr   24hr  48hr    3 hr    8hr   24 hr  48 hr 
9.E-10 

I  .'1    4.E 

4.E-02    7.E-02 

1 
8.E-02 

7.E-02 

7E-02 
l.E-04    5.E-04    4.E-03    8.E-02 

4 E02 iM  l.E-01 
3.E-02 9.E-02 

6.E-02 

8.E-02 

3 Ell 5.E-04 

l.E-14 3 t-02 

Terpenoid backbone biosynthesis l.E-04    2.E-04    l.E-06 

MAPK signaling pathway 

ECM-receptor interaction 

Cell cycle 

Oocyte metosis 
pS3 signaling pathway 

Pathways in cancer 

PPAR signaling pathway 

Progesterone-mediated oocyte maturation 

Ribosome 
Base excision repair 

DNA replication 
Homologous recombination 

Mismatch repair 

Nucleotide excision repair 

Regulation of actin cytoskeleton 

Focal adhesion 

Gap lunction 

4.E-04 

4.E-02    6.E-03 

2.E-06    9.E-10 

l.E-05    5E-05 

4.E-04    l.E-02 

l.E-02 

l.E-04    7.E-03 

9.E-02 

2.E-03    ll 
2.E-04 

7 E-02 

Signaling and 

cell growth 

SE-02 3.E-03 

7.E-02 

Immune 

response 
Complement and coagulation cascades 
Toll like receptor signaling pathway 6. E-02 ^ 

Table 8. Molecular pathways in liver affected by acetaminophen overdose. The p values were calculated 
by Database for Annotation, Visualization and Integrated Discovery 
(http://david.abcc.ncifcrf.gov/home.jsp). 
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Figure 15. Comparison between modules identified by ICMg and SSIM. One of the modules 
identified by ICMg method (ICMg module) shares a number of genes with two separate modules 
identified by SSIM (SSIM module A and B). Expression profiles of genes in three modules are 
shown on the left and protein-protein interaction network are shown in the middle. Genes shared 
by ICMg and SSIM modules are indicated by pink and light blue nodes, and ones exclusively 
belong to ICMg, SSIM module A and SSIM module B are depicted by white, red and blue nodes, 
respectively. In the right panel, enriched GO BP terms (p<1x10-5) and their uncorrected p-values 
for each module are summarized (adapted from Cho et al 2011 BMC Systems Biology) 
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Analysis of mRNA transcripts in blood: Several reports have been described the 
possibility of using the levels of liver-specific transcripts in plasma as biomarkers to 
reflect the pathological conditions in the liver. We adapted the NextGen sequencing 
technology to conduct a detailed characterization of normal plasma RNA spectrum as 
well as the effect of acetaminophen overdose on the circulating RNAs. This would allow 
us to explore the complexity of RNA spectrum in plasma, aid our understanding on the 
effect of acetaminophen overdose, and identify more informative biomarker for liver 
injury. Because of the low RNA concentration in the plasma, we made some 
modifications in the sequencing library preparation protocol. With the modified protocol, 
we obtained about 28 million reads from each sample, after trimmed the adaptors, and 
removed low quality, polyA only and adaptor only sequences, we obtained about 2 to 9 
millions of processed reads from our plasma samples. 

Besides the significant changes on miR-122 and miR-192 levels, similar to what we 
reported earlier (Wang et al 2009 PNAS) and described below, we also observed a 
significant increase of several liver-specific mRNAs including albumin (Alb), ferritin 
(Fth1) and apolipoprotein A2 (Apoa2) (Figure 16). We are in the process of conducting 
a more detailed analysis on the sequence data and prepare a manuscript to report the 
finding. 
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iFthl 

Ohr 3hr 8hr 24hr 

Figure 16. The changes on the levels of several liver specific genes in plasma. The Y-axis is the 
changes on the number of reads in log 2 value between treated vs. control and individual time 
points post acetaminophen exposure are indicated on the X-axis. The gene identity is listed on 
the right of the figure. 

Analysis of microRNA: MicroRNAs (miRNAs) are 19-23 nucleotides, non-coding 
regulatory RNAs in the cells. With support from DOD, we also pioneered the use of 
miRNA in toxicology. Using the acetaminophen overdose animal model, we 
demonstrated that levels of circulating liver enriched microRNAs, miR-122 and miR-192 
are far more sensitive than traditional serological aminotransferase markers (Figure 17). 

A) B) 

Control -  -500 75mj/KB       lSOmg/Kg      30Cmg/Kg "JV-'W Corrrol       75mg/Kg       ISOmg/Kg      30Cmg/Kg 

Figure 17. microRNA are more sensitive markers than SGPT for liver injury Comparison 
between the levels of mir-122 (red bars), mir-192 (green bars) and SGPT (blue line) in plasma 
samples collected from mice 1 (A) and 3 hours (B) after exposed to different doses of 
acetaminophen (indicated on X-axis). The relative change of miRNA expression levels (ratio in 
log 2 compare to control) is indicated on the left side of the figure and the scale of SGPT level is 
on the right. The relative change of miRNA levels are expressed in log 2 ratio of each treatment 
condition compared to the corresponding control. Values of miRNA fold change and SGPT levels 
are the average of 4 independent samples from each time point and the standard derivations are 
shown as error bars, (adapted from Wang et al 2009 PNAS) 
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This finding was reported in a publication by Wang et al in 2009. Most of the 
pharmaceutical companies are now using the level of miR-122 in circulation as routine 
screen in their therapeutics development pipeline. 
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To broaden the utility of using miRNA as biomarker, we also profiled the miRNA 
composition of 12 different types of body fluids including amniotic fluid, breast milk, 
bronchial lavage, cerebrospinal fluid, colostrum, peritoneal fluid, plasma, pleural fluid, 
saliva, seminal fluid, tears, and urine to gain a better understanding on the distribution 
and composition of miRNA in different body fluids. (Figure 18). Some of the miRNAs in 
urine are actually associated with different pathological conditions. This suggested the 
possibility of using miRNA as biomarker for various physio-pathological conditions. 

Figure 18. The body fluid types can be grouped into two major clusters based on the profile of 
commonly expressed miRNAs. Unsupervised hierarchical clustering on commonly "expressed" 
miRNAs groups the samples into two major groups. Plasma is separated from the two major 
clusters (adapted from Weber et al. 2010 Clinic Chem) 

The ideal biomarker should fit a number of criteria depending on how the biomarker is 
to be used (Table 9, adapted from Etheridge et al 2011 Mutation Res). It should be 
accessible through non-invasive methods, specific to the disease or pathology of 
interest, a reliable indication of disease before clinical symptoms appear (early 
detection), sensitive to changes in the pathology (disease progression or therapeutic 
response), and easily translatable from model systems to humans. miRNAs are stable 
in various bodily fluids, the sequences of most miRNAs are conserved among different 
species, the expression of some miRNAs is specific to tissues or biological stages, and 
the level of miRNAs can be easily assessed by various methods, including methods 
such as polymerase chain reaction (PCR), which allows for signal amplification. 

Specific 
Specific to diseased organ or tissue 
Able to differentiate pathologies 

Sensitive 
Rapid and significant release upon the development of pathology 

Predictive 
Long half-life in sample 
Proportional to degree of severity of pathology 

Robust 
Rapid, simple, accurate and inexpensive detection 
Unconfounded by environment and unrelated conditions 

Translatable 
Data can be used to bridge pre-clinical and clinical results 

Non-invasive 
 Present in accessible fluid sample  
Table 9. Characteristics of an ideal biomarker. 
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It has been shown that some miRNAs frequently have sequence variations termed 
isomirs. To better understand the extent of miRNA sequence heterogeneity and its 
potential implications for miRNA function and measurement, we conducted a 
comprehensive survey of miRNA sequence variations from human and mouse samples 
using next generation sequencing platforms. Our results suggest that the process of 
generating this isomir spectrum might not be random and that heterogeneity at the ends 
of miRNA affects the consistency and accuracy of miRNA level measurement. In 
addition, we have constructed a database from our sequencing data that catalogs the 
entire repertoire of miRNA sequences (http://qalas.svstemsbioloqy.net/cqi- 
bin/isomir/find.pl) (Figure 19). This enables users to determine the most abundant 
sequence and the degree of heterogeneity for each individual miRNA species. This 
information will be useful both to better understand the functions of isomirs and to 
improve probe or primer design for miRNA detection and measurement (Lee et al 2010 
RNA)  

o*r«r»m*cchedio thb mftrM. Md 
mdc««ill<* «emmaniuamlran« fnMgn 
d«at»x Kqucnc« arc In pink 

Prtcunor mfR N A Mqutnc« - 
Pin* portion show!tn* mptuf» 
m«NA»qu*nct from rNRBat* 

-•; -. 7 

n EI n 
Figure 19. A screen shot of isomir database. The aligned reads and corresponding counts are 
shown. The first plot shows the frequency of the bases and the second plot shows the frequency 
of the mature miRNA end positions. Sequences that match perfectly to miRBase sequences are 
shown in pink and most abundant sequence are displayed in bold (adapted from Lee et al 2010 
RNA). 

Publications and inventions: 
Wang, K., Zhang, S., Marzolf, B., Troisch, P., Brightman, A., Hu, Z., Hood, L. and 

Galas, D. J. (2009) Circulating microRNAs, a new class of blood biomarker for drug- 
induced liver injury. Proc. Natl. Acad. Sei. USA. 106 4402-4407 

Weber, J., Baxter, D., Zhang, S., Huang, K. H., Lee, M. J., Galas, D. J. and Wang, K. 
(2010) The microRNA spectrum in 12 body fluids. Clin Chem. 56:1733-41. 
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Lee, L. W., Etheridge, A., Zhang S., Ma, L., Martin, D., Galas, D. J. and Wang, K. 
(2010) Complexity of the microRNA repertoire revealed by next-generation sequencing. 
RNA. 16:2170-80. 

Cho, J. H., Wang, K., and Galas, D. J. (2011) An integrative approach to construct 
biologically meaningful modules. BMC Systems Biology, 26:117-126. 

Etheridge, A., Lee., I. Y., Hood, L E., Galas, D., and Wang, K. (2011) Extracellular 
microRNA: a new source of biomarkers. Mutation Res. 717:85-90. 

Patent: 
Methods, compositions, and devices utilizing microRNA to determine physiological 
conditions. Application Number: 12/615969 

VX studies 

Aim 5: Analyze time course experiments of rat tissues and blood exposed to VX. 
Yong Zhou and Kai Wang reporting 

Introduction: The lethal contact nerve agent, VX (S-(diisopropylaminoethyl) 
methylphosphonothiolate o-ethyl ester) (Figure 20) is a potent organophosphate that 
inhibits acetylcholinesterase (AChE), an enzyme responsible for the breakdown of the 
neurotransmitter acetylcholine (ACh). The accumulation of excessive ACh at synapses 
causes overstimulation of the neuromuscular junction that controls smooth muscle, 
cardiac muscle, and exocrine glandular function. VX is more stable, more resistant to 
detoxification, more efficient at skin penetration, and more environmentally persistent 
compared to other organo-phosphate nerve gas compounds. 

*Vc* 
-ye* 

CH; 

Figure 20. The chemical structure of VX. The space filling model is shown on the left while the 
chemical structure is on the right. 

Although blood cholinesterase (ChE) activity has been used as an indicator of nerve 
agent exposure or as an index of recovery, the measurement suffers from extensive 
measurement background. In addition, the high variability of normal blood ChE activity 
makes it difficult to use blood ChE activity as a reliable indicator for organophosphate 
exposure. To further understand the mechanisms of VX induced toxicity and identify 
more reliable candidate blood biomarkers of VX exposure and recovery, since 2009, 
scientists at ISB have been collaborating with Dr. Jennifer Sekowski at Edgewood 
Chemical Biological Center (ECBC) to perform systems biological studies on rat tissues 
and plasma exposed to VX. Overall, we received samples from 23 VX-treated rats 
(subcutaneous injection at 80% LD50 dosage, 12 ug/kg) and 16 control rats. Time-course 
serum samples were collected before treatment ('pre') and at 2 hours, 24 hours, 48 
hours, and 72 hours post-exposure, respectively, while brain and liver samples were 
also collected at 72 hours post-exposure. 

Proteome studies of rat brain tissue exposed with VX Nerve Gas: First, quantitative 
global proteomic analyses were conducted in cerebellum and cerebrum regions, 
respectively by quantifying the relative abundances of proteome in 4 VX-treated and 4 
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control rat cerebellum/cerebrum samples through labeling tryptic peptides with 8-plex 
iTRAQ reagents and conducting LC-MS/MS analyses. 

These two proteomic experiments revealed relative quantification of approximately 
1,000 proteins in both brain regions. Interestingly, only two proteins, GFAP (Glial 
fibrillary acidic protein) and SPTBN2 (spectrin, beta, non-erythrocytic 2) showed 
statistically significant differences (p< 0.05) —a reduction in VX-treated cerebellum 
(Figures 21B and 22B) but not in cerebrum (Figure 24). Western Blot experiments on the 
same rat cerebellum samples confirmed the downtrend of GFAP but not SPTBN2 
(Figures 21A and 22A). 
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Figure 21. Abundance of GFAP in cerebellum of control and VX-treated rats, as measured by 
Western Blot (A) and iTRAQ-based proteomic analysis (B), respectively. 
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Figure 22. Abundance of SPTBN2 in cerebellum of control and VX-treated rats, as measured by 
Western Blot (A) and iTRAQ-based proteomic analysis (B), respectively. 
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Figure 23. Differences in levels of GFAP and SPTBN2 in cerebrum samples of rats treated with 
saline (control) or VX. Error bars represent standard errors among biological replicates (n=4), p > 
0.4 for both GFAP and SPTBN2. 

Circulating microRNAs in animals exposed with VX Nerve Gas: To determine whether 
circulating miRNA can also be used as more reliable biomarkers for organophosphate 
exposure, we also did an initial survey of circulating miRNA spectra from time-course VX 
exposed rat serum (control, 2 hr, 24 hr, 48 hrs and 72 hrs post exposure). 

The amount of total RNA extracted from pooled serum samples ranges from 950 to 
1600 ug/ml and the estimated miRNA population ranges from 460 to 1150 ug/ml based 
on the results from Agilent 2100 Bioanalyzer (Figure 25). There is a gradual decrease on 
the amount of total RNA as well as miRNA in the blood post VX exposure. This may 
indicate severe and persist injury after VX exposure after 48 hours; however, more 
detailed pathological information is needed in order to draw any conclusions on the 
decrease of RNA levels. There is a sudden decrease of RNA and miRNA levels 2 hrs 
post exposure, which may have resulted from acute injuries or responses from the 
animals toward VX exposure. 
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Figure 24. The quality of quantity of RNA isolated from VX exposed serum samples. The image 
from Bioanalyzer 2100 is shown on the left the RNA (blue bars) and estimated microRNA (yellow 
bars) concentrations are shown on the right. The RNA and miRNA concentrations were obtained 
from two independent measurements. The size range used to estimate miRNA concentration is 
labeled on the Bioanalyzer image. 
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By using a low-density taqman card, we have identified 62 circulating miRNAs that are 
detectable in all the samples except those from 72 hrs post exposure. Thirty-nine of 
them displayed significant changes during the course of the experimental period (Figure 
25). Similar as the concentrations of blood total RNA, the specific miRNA levels also 
gradually decreased after VX exposure. Several miRNAs, including mir-128s, mir-27b, 
mir-15b and mir-let7e, showed a significant decrease during the first two hours of VX 
exposure. These may have great potential to be used as a signature for VX or general 
organophosphate exposure. More samples with different organophosphate compounds 
are needed in order to determine the specificity and sensitivity of these circulating 
miRNAs for VX exposure. 

Figure 25. Hierarchical cluster analysis of 39 
differentially expressed miRNA in VX exposed 
serum relative to control. The identities of 
miRNAs are shown on the right and the samples 
are indicated on the top. 

The most affected miRNA species from VX exposure are mir-let 7e and mir-133a. 
The decrease of mir-133 is especially interesting since it is a miRNA that is highly 
enriched in muscles. VX has a well-known, severe effect on the muscle, which may 
cause the decrease of mir-133a (Fig 26A). Unlike the mir-133a, there are several 
miRNAs that showed an initial decrease followed by a gradual recovery, such as the mir- 
30s (Fig 5-7B). This may suggest the recovery of some biological functions after initial 
VX exposure; however, more pathological information is needed to understand the 
recovery of certain miRNA species in the blood. We failed to detect brain specific 
miRNAs, such as mir-124 in the blood, which may indicate that the VX nerve toxin did 
not cause significant structural damage on the CNS. 
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Figure 26.  Relative miRNA changes, compared to controls, in the experimental period. The mir- 
133a shows a gradual decrease (A) while the mir-30s (B) regain their normal levels 48 hours after 
VX exposure. 

The changes in the spectrum of circulating microRNA (miRNA) in blood correlate well 
with various physiopathological conditions including cancers, cardiovascular conditions 
and liver injuries. These observations clearly suggest that the spectrum of extracellular 
blood miRNA can be used as informative biomarkers to monitor the body's 
physiopathological status. Unlike protein-based markers, detecting specific miRNA 
species in the blood is a much easier task in general. 

Quantitative mapping of serum proteome in VX gas exposed rats: Our goals of serum 
proteome profiling include 1) to test the hypothesis that the serum proteome contains 
signals that correlated to VX exposure over time course (from Oh to 72h), 2) to identify 
putative biomarkers for VX exposure and recovery, 3) to further understand the 
mechanisms and targets of VX-induced toxicity. Considering the complexity of serum 
proteome, high dynamic range of serum proteins, and the difficulties in analyzing 
proteomics data with multiple time points, we adapted an approach by combining affinity 
column to deplete high abundant plasma proteins with high resolution and high 
sensitivity mass spectrometry to conduct label-free quantitative proteomic analyses. In 
order to be comparable with microRNA profiling data, the same, pooled serum sample 
set was used in the proteome profiling experiment. 

By using this approach, from a set of five pooled VX-treated rat sera (15 ul each), we 
identified 3,189 unique peptides from 233 distinct proteins with ProteinProphet cut-off 
score of >0.7 and error rate <0.05. The average peptide sequence coverage is about 
15.0%. Although the majority of identified proteins are well-known highly abundant 
serum proteins, a number of tissues derived proteins are also identified. For example, 
the vesicle-associated membrane proteins 1 (Vampl), dendrin (Ndn), periaxin (Prx), and 
solute carrier family 5 (choline transporter) (Slc5a7) are cytoplasm/membrane proteins 
that highly expressed in brain. 

In the label-free proteomics analysis, 7,231 features were aligned with minimum of 3 
LC-MS runs. The scatter plots (Figure 27) clearly describe that hundreds of features are 
either up- or down- presented at 24h and 48h post VX exposure. Although the majority 
of these changes are not statistically significant due to the small sample size, this 
phenomenon is still encouraging. Meanwhile, considering that the intensities of same 
features in duplicate runs at the same time point are more consistent comparing to that 
at different time points, the variations presenting at 24h and 48h are likely to be from the 
samples. 
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Figure 27: Aligned feature intensity comparisons between VX-treatment time points. Scatter plots 
are either between two replicates at the same time point (gray shaded), or between mean 
intensities of two different time points (off-diagonal) 

By adapting time-course statistic tools like EDGE (Extraction of Different Gene 
Expression), we identified 63 proteins that showing significant changes on their levels in 
blood during VX exposure (Table 10). Interestingly, 22 of them have been reported 
previously as inflammatory response- and/or acute-phase- associated plasma proteins, 
which further suggest the involvement of inflammatory processes in VX induced injury. 
For example, the ITIH4 (inter-alpha-trypsin inhibitor heavy chain 4) has been identified 
as an acute-phase protein isolated from cattle during experimental infection with a 
mixture of Actinomyces pyogenes, Fusobacterium necrophorum, and 
Peptostreptococcus indolicus (M. Pineiro, et al, Infection and Immunity, 2004, Vol. 72, p 
3777-3782). 

On the other hand, 8 liver-specific proteins are presenting in the differential 
expressed protein list. The changes of these liver enriched proteins clearly suggest the 
involvement of liver in VX induced toxicitv. For example, carboxylesterase 1 precursor 
(CES1), a liver-specific intracellular membrane protein that involves in the detoxification 
of xenobiotics and in the activation of ester and amide prodrugs, were suppressed after 
24 hours of VX exposure, which may indicate close association of CES1 in VX 
metabolism. 
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Gene 
Symbol 

Protein Description VXOh VX2h VX24h VX48h VX72h P- 
Value 

Q- 
Value 

Inflamm 
atory/Ac 
ute 
phase * 

Afm afamin 0 -0.1899 -0.4208 -0.2393 -0.9850 0.0118 0.1169 
Ahsg alpha-2-HS-glycoprotein 0 0.0804 0.5875 0.5217 0.2555 0.0367 0.1386 Yes 
Alb albumin 0 0.1133 1.0945 0.4803 0.0170 0.0004 0.0157 
Apoal apolipoprotein A-l 0 -0.2064 -0.3466 -0.1566 -0.6569 0.0379 0.1395 
Apoa4 apolipoprotein A-IV 0 0.1177 -0.0527 -0.1849 -0.2471 0.0170 0.1169 

Apob apolipoprotein B 0 -0.9853 -0.9146 -0.8583 10.798 
3 

0.0000 0.0006 

Apoe apolipoprotein E 0 0.1555 -0.4810 -0.3931 -0.6985 0.0210 0.1169 
Apoh apolipoprotein H 0 0.5107 0.9790 0.7262 0.7313 0.0190 0.1169 
Apom apolipoprotein M 0 0.0107 -0.2633 -0.1616 -0.2565 0.0413 0.1452 
C2 complement component 2 0 0.0662 0.6389 0.7299 0.5742 0.0196 0.1169 Yes 
C3 complement component 3 0 0.0932 0.2772 -0.2338 -0.4614 0.0218 0.1169 Yes 
C9 complement component 9 0 0.4811 1.1476 0.6213 0.7258 0.0349 0.1356 Yes 

Cfh complement component 
factor H 0 0.6312 2.3729 1.4048 2.0601 0.0049 0.1035 Yes 

Cfi complement factor I 0 0.7813 1.4797 1.2300 1.2613 0.0119 0.1169 Yes 
Cfp complement factor properdin 0 -0.0144 -0.2274 -0.4097 -0.6290 0.0146 0.1169 Yes 
Clu clusterin 0 0.1142 -0.4377 -0.3554 -0.5143 0.0250 0.1169 Yes 
Cp ceruloplasmin 0 0.6883 2.1067 1.3146 1.5143 0.0011 0.0329 

Cpn1 carboxypeptidase N, catalytic 
chain 0 -0.1075 -0.4720 -0.2857 -0.5282 0.0241 0.1169 

D3ZC54_ 
RAT Uncharacterized protein 0 -0.1707 -0.1245 -5.4128 10.486 

5 
0.0259 0.1169 

D4AC77 
RAT Uncharacterized protein 0 0.1481 -0.2754 -9.8188 -1.1309 0.0002 0.0109 

Es1 esterase 1 0 -0.1575 -0.6346 -0.4511 -0.4119 0.0037 0.0932 
F2 coagulation factor II 0 0.9298 2.4570 2.8775 2.3656 0.0444 0.1519 Yes 
Fetub fetuin beta 0 0.7428 2.7018 2.0964 2.1106 0.0002 0.0109 
Fga fibrinogen, alpha polypeptide 0 0.3692 1.7791 0.9855 1.0976 0.0099 0.1169 
Fgb fibrinogen, B beta polypeptide 0 0.4264 1.9615 1.0351 1.1902 0.0186 0.1169 
Fgg fibrinogen, gamma polypeptide 0 0.4821 1.5807 0.5478 1.1169 0.0240 0.1169 
Fn1 fibronectin 1 0 0.5184 1.4067 0.2692 1.0195 0.0048 0.1033 Yes 
Gc group specific component 0 -0.0692 -0.9088 -0.4078 -0.6824 0.0160 0.1169 
Gsn gelsolin 0 3.5089 8.9027 7.9854 8.3943 0.0206 0.1169 
Hbb hemoglobin, beta 0 -0.3067 -0.4307 -0.4960 -1.8646 0.0170 0.1169 
Hp haptoglobin 0 0.2375 0.8476 0.1169 0.2776 0.0038 0.0932 
Hps5; 
Saa4 

Hermansky-Pudlak syndrome 5 0 0.5478 2.8935 -7.7999 -2.8250 0.0456 0.1542 

Hpx hemopexin 0 0.0924 1.7479 0.7231 0.9171 0.0140 0.1169 
Hrg histidine-rich glycoprotein 0 0.6258 2.2868 2.1702 1.9479 0.0004 0.0181 

lgh-1a 
IgG heavy chain 1a (serum 
lqG2a) 0 0.2443 1.0688 -0.1614 0.5514 0.0186 0.1169 

Itihl 
inter-alpha trypsin inhibitor, 
heavy chain 1 0 0.0239 -0.2731 -0.7616 -0.1865 0.0066 0.1169 

Itih3 inter-alpha trypsin inhibitor, 
heavy chain 3 0 0.2360 0.6870 0.2759 0.3053 0.0366 0.1386 

Itih4 inter alpha-trypsin inhibitor, 
heavy chain 4 0 -0.1000 -0.3499 -0.1456 -0.5120 0.0240 0.1169 Yes 

Kng2 kininogen 2 0 0.4059 2.0760 1.1404 1.4665 0.0063 0.1169 
LOC2975 
68 

alpha-1-inhibitor III 0 -0.1183 -0.3144 -0.1829 -0.6539 0.0001 0.0068 Yes 
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LOC2992 
82 Serine protease inhibitor 0 -0.2560 -0.4686 -0.2345 -0.5014 0.0083 0.1169 

LOC3605 
04 hemoglobin alpha 2 chain 0 -0.2225 -0.3069 -0.1715 -1.1911 0.0292 0.1218 

LOC4987 
93 

inter-alpha-inhibitor H2 chain 0 -0.1179 -0.1901 -0.3442 0.0429 0.0235 0.1169 

MGC108 
747 

similar to alpha-1 major acute 
phase protein prepeptide 

0 0.2751 0.1718 -0.5375 -0.3147 0.0393 0.1416 Yes 

Mug1 Murinoglobulin 1 homolog 0 -0.4060 -1.3770 -0.6357 -1.3577 0.0018 0.0488 
Mug2 murinoglobulin 2 0 0.0380 1.6785 1.7924 1.4022 0.0039 0.0947 

Nfkbil2 
nuclear factor of kappa light 
polypeptide gene enhancer in 
B-cells inhibitor-like 2 

0 0.9788 1.8048 1.9983 1.7982 0.0217 0.1169 Yes 

Orm1 orosomucoid 1 0 0.0723 2.1272 0.7767 1.2284 0.0124 0.1169 Yes 
Pf4 platelet factor 4 0 -0.1160 0.0309 -0.5258 -0.7967 0.0338 0.1335 
Pig plasminogen 0 0.3908 1.8879 1.8390 1.5486 0.0049 0.1035 
Pzp preg20000cy-zone protein 0 -0.0047 0.2190 -0.9434 -0.5315 0.0187 0.1169 

RGD130 
9019 

similar to Ras GTPase- 
activating protein nGAP (RAS 
protein activator like 1) 

0 -0.4546 -1.1836 -0.2645 -0.7542 0.0291 0.1216 

Serpinal serine (or cysteine) proteinase 
inhibitor, clade A, member 1 0 0.0539 1.6327 0.9244 1.0056 0.0245 0.1169 Yes 

Serpinal 
0 

serine (or cysteine) peptidase 
inhibitor, clade A, member 10 

0 -0.5708 10.094 
4 

-0.2797 -5.3584 0.0000 0.0006 

Serpina3 
k 

serine (or cysteine) peptidase 
inhibitor, clade A, member 3K 

0 -0.1347 -0.3371 -0.1116 -0.5525 0.0017 0.0488 Yes 

Serpina3 
m 

serine (or cysteine) proteinase 
inhibitor, clade A, member 3M 

0 -0.2254 -0.5507 -0.3047 -0.3596 0.0069 0.1169 Yes 

Serpina3 
n 

serine (or cysteine) peptidase 
inhibitor, clade A, member 3N 

0 0.3991 2.2099 1.4240 1.7527 0.0058 0.1156 Yes 

Serpina6 
serine (or cysteine) peptidase 
inhibitor, clade A, member 6 0 -0.0028 -0.5596 -0.3196 -0.5268 0.0018 0.0488 

Serpinf2 serine (or cysteine) peptidase 
inhibitor, clade F, member 2 0 0.9135 2.2223 1.6176 1.8295 0.0043 0.0956 Yes 

Serpingl serine (or cysteine) peptidase 
inhibitor, clade G, member 1 0 0.8368 1.5576 1.4403 1.2841 0.0344 0.1348 Yes 

Srprb signal recognition particle 
receptor, B subunit 

0 -0.1772 -0.4159 -0.4854 -0.9634 0.0000 0.0006 

Tf Serotransferrin 0 0.0891 1.3489 1.4019 0.9879 0.0105 0.1169 Yes 
Ttr transthyretin 0 -0.2240 -0.4493 -0.4808 -0.6215 0.0069 0.1169 

Table 10. List of 63 proteins that differentially expressed in VX-exposed rat serum vs. control 

Twenty-two of them are inflammatory and acute phase response proteins and 8 are liver-specific 
proteins (in Bold). Differentially expressed proteins were identified by EDGE time-course analysis 
mode. Select Q-Value cut-off: 0.05, equals to expected false discovery rate: 3.0%. 

*: Data from "Dissecting the human plasma proteome and inflammatory response biomarkers" 
(Chen, et al., Proteomics, 2009, 9, 470-484) and other literatures. 

Summary: Under the current contract, scientists at I SB have conducted multiple 
systems biological analyses in time course experiments of rat tissues and blood exposed 
to VX and observed that: 

1. A proteomics analysis of two brain regions (cerebellum and cerebrum) revealed a 
reduction in cerebellum glial fibrillary acidic protein (GFAP) at 72 hrs. 
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2. miRNA analysis demonstrated an elevated level of mir-133a in VX-exposed serum, 
which is preferentially expressed in muscle tissue. 

3. Proteomic analysis of the blood serum unveiled 63 proteins that showing significant 
changes in serum during VX exposure. Twenty-two of them have been reported 
previously as inflammatory response- and/or acute-phase- associated plasma proteins. 
And 8 proteins are highly expressed in liver. 

Although the integration of datasets from different levels of systems biology analysis 
indicates the lack of VX nerve toxin caused significant structural damage on the central 
nerve system, changes of liver-enriched proteins and inflammatory response-/ acute- 
phase- associated proteins in serum, clearly suggest the involvement of liver and acute- 
phase inflammatory processes in VX induced toxicity. Also, the elevated level of mir- 
133a in serum nicely demonstrates VX-induced damage in muscle tissue. 

However, more information is needed to help understand the molecular affects of VX 
associated toxicity. For example, data from western blots on individual samples from 
both VX-treatment and control groups will be necessary to confirm these findings. We 
have been tested a few Abs in VX-treated and control serum samples, but they are all 
failed due to either the low specificity of Abs, high noise background from serum, or the 
lower-than detection abundance of target proteins in the blood. 

Meanwhile, a list of candidate serum protein/miRNA biomarkers has been unveiled in 
these systems biological data sets. Many of them may be worth for further validation in 
blood as potential biomarkers of VX-exposure. 

Alternative protein detection methods 

Aim 6: Develop new technologies for developing protein-capture agents and the 
analyses of single protein molecules. 

Project Aim 6 called for the development of new protein biomarker discovery methods 
utilizing surface plasmon resonance (SPR) detection and antibody microarrays, and to 
apply those methods to the study of in vivo and cell culture models of hepatotoxicity. 
Chris Lausted reports: 

Cell culture analyses: In addition to studies summarized (Aims 2,3,4 section C), we 
attempted to utilize in vitro models to study the effects of APAP and additional toxic 
compounds. Hepatocyte secretions (from HepG2 and other liver cell lines) were 
analyzed using antibody microarrays which revealed only a very general pattern. The 
injured cells reduced their secretion of highly-produced proteins such as plasminogen 
and fibrinogen, but no elevated liver-specific proteins were observed. Cells were treated 
with toxic levels of amiodarone, nefazodone, tamoxifen and troglitazone as well as non- 
toxic controls. Our protocol involved the incubation of liver cells for 24 hours in serum- 
free DMEM, media removal, and 0.2 \xm filtration to remove dead cells. The conditional 
media were concentrated and then diluted in PBS to a final concentration of 100 ng/ml. 
It appears low levels of expression of cytochrome P450 and of the liver-specific targets 
in the cell lines were a major limitation with this approach. 

Antibody Development. Antibodies are key materials for biomarker research as they are 
required for microarrays and immunoblots. Furthermore, ELISA assays require pairs of 
matched antibodies binding to separate protein epitopes. As antibodies were not 
available for half of our liver-specific targets, we worked to develop a system to produce 
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high quality monoclonal antibodies and antibody pairs via hybridoma technology. 
Typically, hybridomas are selected based on an arbitrary level of binding to the target. 
As we ultimately will require antibodies for use with blood samples, we wish to prioritize 
the specificity of the antibody (where specificity is the difference in affinity for the target 
protein relative to all other serum proteins). 

We have developed a new method to evaluate the specificity of the hybridoma 
antibodies using a single SPR microarray. The method involves antibody isotyping, 
quantification, and a set of absolute affinity measurements. The microarray contains 
antibodies to both IgG and IgM for isotyping. The kinetics of these antibodies are 
measured once and then used for calculating all of the unknown hybridoma 
concentrations. The microarray contains a comprehensive collection of liver-specific 
targets as well as a number of abundant serum proteins, and total human, mouse, and 
rat serum protein. With the antibody concentrations calculated, the target affinity and the 
off-target affinities can all be determined in relative or absolute units. The difference 
between the target affinity and the highest off-target affinity provides the best measure of 
specificity. The most specific hybridoma antibodies were chosen for full-scale 
productions. This procedure is both economical and efficient, requiring no labeling and a 
mere 20 uL of supematent for quantitative analysis. 
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Figure 28. SPR sensorgrams determine the isotype and concentration of antibody in hybridoma 
supernatants. Twelve hybridoma supernatants raised against a COMT-GST recombinant target 
all show binding to the target (blue trace). Eight hybridomas contain IgM antibodies (green trace 
is higher than red trace). Four hybridomas contain IgG antibodies (red trace is higher than green 
trace). Either the isotype-specific binding (red and green traces), or the isotype independent 
binding (black trace) may be used to determine hybridoma antibody concentration. 

ELISA Development As biomarkers are of little value without an assay, we worked to 
develop ELISAs for each candidate biomarker. Using the SPR data, hybridomas were 
chosen for production based on their suitability for sandwich assays. The resulting 
antibodies were used to develop conventional chemiluminescent ELISAs. We 
successfully produced assays for human DPYS, BHMT (capture with monoclonal 
ISB030-4D1, detection with ProteinTech #212), ALDOB (capture with monoclonal 
ISB030-5G6, detection with polyclonal), ALDH1L1 (capture with monoclonal ISB030- 
1C5, detection with polyclonal), PAH (capture with monoclonal ISB030-2A5, detection 
with polyclonal 036#1), HA01 (capture with monoclonal ISB030-1F3, detection with 
polyclonal), MAT1A (capture with monoclonal ISB030-4A3, detection with polyclonal 
036#1), and PIPOX (capture with monoclonal ISB030-3A4, detection with polyclonal 
036#1), 
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Linearity always exceeded two orders of magnitude with typical limits of quantitation 
in the low nanogram per milliliter range using 250 ng of each antibody in the microtitre 
plate format. 

As panels are biomarkers can be more accurate than individual biomarkers, we also 
worked to develop a multiplexed ELISA to quantify all eight of these liver-specific 
proteins in addition to a dozen cytokine markers of inflammation. Inflammation in an 
important factor in drug induced liver injury. We worked to develop a 20-plex protein 
panel using Nanostring nCounter technology. Intended for RNA measurement, we 
developed a protein version of the assay with high sensitivity that only requires 5 u.L of 
serum sample. The cytokine portion of the assay was successful, resulting in sensitivity 
comparably to conventional single-plex ELISAs. Cross-reactivity between the liver- 
specific proteins was observed, reducing sensitivity to a level inadequate for detecting 
liver injury. This may indicate that the specificity of our new antibodies is lower than that 
of the cytokine antibodies used. We will continue to work towards improving and 
implementing this assay through other sources of funding. 

SPR Software: Software was created during the technology development portion of this 
research has been made public. OSPRAI is the open-source software project at ISB for 
the analysis of the high-throughput data generated by Surface Plasmon Resonance 
Imaging. OSPRAI is developed and used by liver toxicity project members, as well as 
others, for analyzing the antigen arrays used in antibody development and for 
quantitative proteomics with antibody microarrays. The documentation and code 
repository is hosted by the servers at the Bioinformatics Organization 
(http://www.bioinformatics.org/groups/?group_id=1018). This organization hosts 
bioinformatics collaborations free-of-charge for academic use. Services include software 
version control (Subversion SVN), bug tracking, forums, and a web page. OSPRAI 
includes tools for converting common SPR data formats (e.g. Biacore, Lumera, CLAMP, 
spreadsheets), signal calibration, outlier removal, and kinetic parameter determination 
by curve-fitting. Prior to this, no such software has been available for SPR microarray 
analysis. 

Publications: Quantitative serum proteomics from surface plasmon resonance 
imaging." 
Christopher Lausted, Zhiyuan Hu, and Leroy Hood. Mol Cell Proteomics. 2008 
Dec;7(12):2464-74. 

Efficient antibody screening using surface plasmon resonance imaging of antigen 
microarrays." Christopher Lausted, Zhiyuan Hu, and Leroy Hood. In preparation. 
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